Perylene Diimide-Containing Dynamic Hyper-crosslinked Ionic Porous Organic Polymers: Modulation of Assembly and Gas Storage
A strategy to synthesize hyper-crosslinked polymers with strong visible-light absorption and abundant ionic sites is discussed. This is achieved in a one-pot reaction via the simultaneous Friedel–Crafts alkylation and quaternization reaction between α,α′-dibromo-p-xylene (DBX) and perylene diimide (PDI) substituted with N,N-dimethyl ethylene to result in hyper-crosslinked ionic polymers (HIPs). These HIPs display good surface areas with strong visible-light absorption (400–650 nm) and dispersibility in polar solvents like water and DMSO. Importantly, our experimental and theoretical studies indicate that PDI-HIPs possess a dynamic network with good uptake of water up to seven times their weight. Notably, PDI in PDI-HIPs is not only responsible for visible-light absorption but also acts as a probe to study their dynamic nature. Moreover, the presence of ultramicropores and CO2-philic functional groups in PDI-HIPs renders good CO2 uptake up to 2.11 mmol/g at 273 K despite their relatively low surface area.